Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
J Biomol Tech ; 32(3): 228-275, 2021 09.
Article in English | MEDLINE | ID: covidwho-1687373

ABSTRACT

As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.


Subject(s)
COVID-19 , Nucleic Acid Amplification Techniques , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Humans , Molecular Diagnostic Techniques , Pandemics , RNA, Viral , SARS-CoV-2/isolation & purification
2.
J Biomol Tech ; 32(3): 172-179, 2021 09.
Article in English | MEDLINE | ID: covidwho-1625349

ABSTRACT

Wastewater surveillance for monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important epidemiologic tool for the assessment of population-wide coronavirus disease 2019 (COVID-19). This tool can be successfully implemented only if SARS-CoV-2 RNA in wastewater can be accurately recovered and quantified. The lack of standardized procedure for wastewater virus analysis has resulted in varying SARS-CoV-2 concentrations for the same sample. This study reports the effect of 4 key factors-sample volume, percentage polyethylene glycol (PEG)-NaCl, incubation period, and storage duration at 4°C-on the recovery of spiked noninfectious SARS-CoV-2 RNA in raw sewage and sludge samples. N1 and N2 genes of SARS-CoV-2 were quantified using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and digital droplet PCR (RT-ddPCR) techniques. Results indicate that 1) for raw sewage, 50-ml sample volume, 30% PEG-NaCl addition, 6-h incubation, and sample analysis within 24 h of collection can result in much better RNA recovery (RT-qPCR: 72% for N1 and 82% for N2; RT-ddPCR: 55% for N1 and 85% for N2) when compared with commonly used PEG-based method; 2) for sludge, the sample analysis using raw sewage protocol and all other variations of each factor mostly resulted in false negatives for both N1 and N2. The absence of N1 and N2 suggests that sludge samples probably need a pretreatment step that releases RNA entrapped in sludge solids back into bulk solution. In conclusion, our modified PEG-based concentration method can cut down the analysis time at least by half, which in turn helps to implement early detection system for SARS-CoV-2 in wastewater.


Subject(s)
COVID-19 , Sewage , Humans , Polyethylene Glycols , RNA, Viral/genetics , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
3.
Journal of biomolecular techniques : JBT ; 32(3):199-205, 2021.
Article in English | EuropePMC | ID: covidwho-1619386

ABSTRACT

Loop-mediated isothermal amplification (LAMP) is a power tool for the amplification of specific RNA and DNA targets. Much like PCR, LAMP requires primers that surround a target amplification region and generates exponential product through a unique highly specific daisy-chain single-temperature amplification reaction. However, until recently, attempts to amplify targets of greater than 200 base pairs (bp) have been mostly unsuccessful and limited to short amplicon targets of less than 150 bp. Although short amplicons have the benefit of a rapid detection (<40 min), they do not allow for the prediction of RNA integrity based on RNA length and possible intactness. In this study, 8 primer sets were developed using 2 LAMP primer–specific software packages against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid gene with insert lengths ranging from 262 to 945 bp in order to amplify and infer the integrity of viral RNA. Because these amplification lengths are greater than the current methods that use an insert length of 130 or less, they require a longer incubation, modified primer and temperature strategies, and the addition of specific adjuncts to prevent nonspecific amplification. This proof of concept study resulted in successful reverse transcription LAMP reactions for amplicon targets of 262, 687, 693, and 945 bp using a clinical nasopharyngeal NP sample, purified SARS-CoV-2 RNA, and crude lysate containing inactivated virus.

SELECTION OF CITATIONS
SEARCH DETAIL